Detail príspevku/publikácie

Mathematical Models as Abstractions

Organon F, 2018, vol. 25, No 2, pp. 244-264.
Súbor na stiahnutie: PDF
BibTex EndNote Tagged EndNote XML RIS
The paper concerns a contemporary problem emerging in philosophy of science about the explanatory status of mathematical models as abstractions. The starting point lies in the analysis of Morrison’s discrimination of models as idealizations and models as abstractions. There abstraction has a special status because its non-realistic nature (e.g. an infinite number of particles, an infinite structure of fractal etc.) is the very reason for its explanatory success and usefulness. The paper presents two new examples of mathematical models as abstractions – the fractal invariant of phase space transformations in the dynamic systems theory and infinite sets in the formal grammar and automata theory. The author is convinced about the indispensability of mathematical models as abstraction, but somehow disagrees with the interpretation of its explanatory power.

Kontakt

Filozofický ústav SAV, v. v. i.
Klemensova 19
813 64 Bratislava
Tel.: (+4212) 5292 1215
Fax: (+4212) 5292 1215
E-mail: filosekr@savba.sk
Domovská stránka

Filozofia - redakcia

Filozofický ústav SAV, v. v. i.
Klemensova 19
813 64 Bratislava
Tel.: (+4212) 5296 4886
Fax: (+4212) 5292 1215
E-Mail: filofilo@savba.sk
Domovská stránka

Organon F - redakcia

Filozofický ústav SAV, v. v. i.
Klemensova 19
813 64 Bratislava
Tel.:(+4212) 5292 1215
Fax: (+4212) 5292 1215
E-mail: organonf@gmail.com
Domovská stránka